Quando necessário, utilize, para cálculos, as seguintes aproximações para constantes físicas:

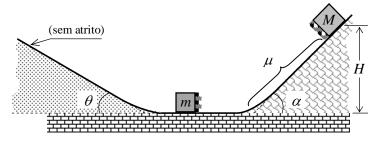
Carga elementar $e = 1.6 \times 10^{-19} \text{ C}$ Velocidade da luz (vácuo) $c = 3.0 \times 10^8 \text{ m/s}$ Constante universal (gases) $R = 8.3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ Constante de Planck $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$

Aceleração da gravidade $g = 10.0 \text{ m} \cdot \text{s}^{-2}$ (módulo)

Relações trigonométricas:

$$\operatorname{sen} (\alpha \pm \beta) = \operatorname{sen} \alpha \cdot \cos \beta \pm \operatorname{sen} \beta \cdot \cos \alpha \qquad \qquad \cos (\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \operatorname{sen} \alpha \cdot \operatorname{sen} \beta$$

Em problemas com resultados literais, sem contas numéricas, utilize apenas os símbolos das grandezas; por exemplo, para a aceleração da gravidade (módulo), use g; para a carga elementar, use e, etc.


QUÍMICA:

Se necessário, utilize a TABELA PERIÓDICA DOS ELEMENTOS QUÍMICOS abaixo.

1																	18
ΙA																	0
1							Ī	Número	Atômic	0							2
Н	2							Sím		13	14	15	16	17	He		
1,01	II A								Atômica			III A	IV A	VA	VI A	VII A	4,00
3	4]					L					5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6,94	9,01											10,81	12,01	14,01	16,00	19,00	20,18
11	12											13	14	15	16	17	18
Na		3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	ĈI	Ar
22,99		III B	IV B	V B	VI B	VII B	O	VJII	10	I B	II B	26,98	28,09	30,97	32,06	35,45	39,95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
		44,96	47,90	-	51,99	54,93	55,84	58,93	58,71	63,54	65,37	69,72		74,92	78,96	اط 79,90	
39,10	38	39	47,90	50,94 41	42	43	44	45	46	47	48	49	72,59 50	51	52	79,90 53	83,80 54
37			_					1						_		- 33 - I	
Rb		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l	Xe
85,47	87,62	88,90	91,22	92,90	95,94	(98)	101,07	102,90	106,40	107,87	112,40	114,82	118,69	121,75	127,60	126,90	131,30
55	56	Série	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,9	1 137,34		178,49	180,95	183,85	186,20	190,20	192,20	195,09	196,97	200,59	204,37	207,19	208,98	(210)	(210)	(222)
87	88	Série	104	105	106	107	108	109	110	111	112	113			116		118
Fr	Ra	Ac	Uf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uuq			Uuh		Uuo
(223)			(272)		- 3					2 3.4.	2 3.70	•					
	1		1	I.	I.	1	ı	1	1	I.		I.	ı			l	
	Série	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	

1a OUESTÃO

Um bloco de massa $M=0.30\,\mathrm{kg}$ é abandonado do alto de uma rampa de declividade $\alpha=45^\circ$. Ele parte da altura $H=16\,\mathrm{m}$, indo atingir outro bloco de massa $m=0.10\,\mathrm{kg}$, inicialmente em repouso na base da rampa (ver figura). Os blocos se grudam por causa de velcro afixado nas partes que se tocam no choque, indo o conjun-

to, em seguida, subir uma segunda rampa de declividade $\theta = 30^{\circ}$. A rampa inicial, à direita na figura, é áspera, e o coeficiente de atrito cinético entre sua superfície e o bloco vale $\mu = 0.80$. Já a rampa à esquerda é perfeitamente polida, não havendo atrito entre ela e os blocos. Nos cálculos a seguir, despreze a pequena curvatura da trajetória dos blocos nas junções entre as bases das rampas e o piso horizontal. Despreze também o atrito no piso horizontal, a resistência do ar e as dimensões dos blocos. Determine

- A) a velocidade do bloco de massa M, imediatamente antes de se chocar com o bloco em repouso;
- B) a velocidade do conjunto de blocos, imediatamente após o choque;
- C) a altura máxima atingida pelo conjunto de blocos ao subir a rampa da esquerda;
- D) o intervalo de tempo gasto pelo conjunto na subida da rampa da esquerda.

HISTÓRIA

1ª QUESTÃO

Encontramos, na historiografia, diversos termos ou conceitos, como *legado histórico*, que significa o patrimônio transmitido às gerações subsequentes. Outros conceitos são mais abrangentes e se referem a épocas ou periodizações com características históricas determinadas, como *Antiguidade Clássica* (situada, aproximadamente, entre os séculos VIII a.C. e V d.C) e *Renascimento* (situado, aproximadamente, entre os séculos XIV e XVII). A partir desses entendimentos concernentes à história do Ocidente,

- A) caracterize dois legados político-jurídicos da Antiguidade Clássica (Greco-Romana ou Greco-Latina);
- B) cite duas obras características do *Renascimento* e seus respectivos autores.

QUÍMICA

1a QUESTÃO

Considere a equação química não balanceada abaixo, que representa a reação de obtenção do etanol de primeira geração a partir da fermentação do caldo de cana sob ação de certas leveduras. O processo ocorre a pressão constante.

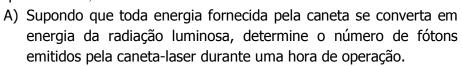
$$C_6H_{12}O_6(I)$$
 $C_2H_5OH(I) + CO_2(g)$

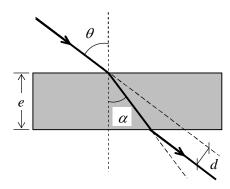
- A) Determine qual seria a ordem global da reação acima, supondo que a unidade da constante de velocidade fosse L.mol⁻¹.s⁻¹.
- B) Calcule a quantidade de energia envolvida na produção de 1,0 (um) mol de etanol.
- C) Determine quantos gramas de etanol deveriam sofrer combustão para se produzir a mesma quantidade de energia produzida na combustão de 1,0 (um) mol de glicose.
- D) Escreva a equação química balanceada que representa a reação de formação da glicose.

Dados:

Calor de formação da Glicose (I) (298 K, 1 atm) = $-1.274 \text{ kJ.mol}^{-1}$

Calor de formação do Etanol (I) (298 K, 1 atm) = -278 kJ.mol^{-1}


Calor de formação do Gás Carbônico (g) (298 K, 1 atm) = -394 kJ.mol⁻¹


Calor de formação da Água (I) (298 K, 1 atm) = -286 kJ.mol⁻¹

ESPAÇO RESERVADO PARA O DESENVOLVIMENTO DA 1ª QUESTÃO

2ª QUESTÃO

Uma caneta-laser de 5,0 mW de potência produz um feixe de luz vermelha de comprimento de onda $660~\mathrm{nm}$. O feixe, vindo do ar de índice de refração $n_{\mathrm{ar}}=1$, incide em uma lâmina de vidro de faces paralelas e de espessura $e=40~\mathrm{mm}$, fazendo um ângulo θ com a direção normal às faces da lâmina, tal que $\cos\theta=0.60$, conforme figura. Dentro da lâmina, o feixe faz um ângulo α com a direção normal, tal que $\cos\alpha=0.80$. Dado: $1~\mathrm{nm}=1\times10^{-9}~\mathrm{m}$.

- B) Sabendo que um elétron-volt (1 eV) é a quantidade de energia que um elétron adquire ao passar por dois pontos em que há uma ddp de 1 V, determine a energia de cada fóton vermelho em elétron-volts.
- C) Determine o valor do deslocamento lateral do feixe (indicado por d na figura).
- D) Determine o comprimento de onda e a frequência de cada fóton dentro do vidro.

HISTÓRIA

2ª QUESTÃO

Nas relações políticas internacionais, o *embargo* é uma decisão de isolamento, geralmente unilateral, contra determinado país, a exemplo do **Bloqueio Continental**, decretado, em 1806, por Napoleão Bonaparte. Outros embargos foram decretados, posteriormente, e um dos mais longos tem sido o bloqueio econômico contra a ilha de Cuba, ainda em vigor, decretado pelo presidente John Kennedy, em fevereiro de 1962, imediatamente após a exclusão de Cuba da Organização dos Estados Americanos. Levando em consideração as respectivas conjunturas históricas e as motivações políticas e/ou ideológicas, explique os embargos, na ordem que se seque:

- A) o Bloqueio Continental;
- B) o Bloqueio Econômico a Cuba.

QUÍMICA

2ª QUESTÃO

O cobre, o zinco e o chumbo são elementos essenciais na manufatura de uma série de materiais úteis aos seres humanos. Entretanto, a exposição a esses materiais pode provocar sérios danos à saúde, dados seus poderes acumulativos no organismo. Em relação a esses metais, resolva os itens abaixo.

- A) Em uma amostra de fertilizante, a concentração de cobre foi de 39 mg.kg⁻¹. Determine quantos átomos de cobre estarão presentes em uma saca de 50 kg do fertilizante.
- B) Dê o número máximo de elétrons que poderia ser acomodado no nível de energia n=5, se fosse possível adicionar elétrons indefinidamente ao cobre, ao zinco e ao chumbo.
- C) Sabendo que os potenciais de redução padrão (E°) do cobre, do zinco e do chumbo são, respectivamente, +0,34 V, -0,76 V e -0,13 V, determine qual(is) par(es) poderia(m) formar pilha(s) na condição padrão. Escreva as reações.
- D) O zinco pode reagir com o ácido nítrico para produzir nitrato de zinco, nitrato de amônio e água. Escreva a equação balanceada para essa reação.

ESPAÇO RESERVADO PARA O DESENVOLVIMENTO DA 2ª QUESTÃO

3a OUESTÃO

Um balão de borracha, de massa m, é enchido com uma massa M de gás à temperatura ambiente (T_0) e à pressão atmosférica (p_0), atingindo um formato esférico depois de cheio. A espessura da parede do balão é desprezível, comparada a seu raio. A densidade do ar atmosférico externo ao balão é dada por ρ_0 . Suponha que o gás dentro do balão tenha comportamento de gás ideal.

- A) Determine o raio do balão.
- B) Determine a densidade do gás dentro do balão, necessária para que ele flutue em equilíbrio no ar.
- C) Presuma que o balão seja feito de material isolante térmico, de modo que a temperatura interna não seja necessariamente igual à temperatura externa. Suponha que a temperatura do gás seja aumentada para o valor $T = \beta T_0$, com $\beta > 1$, mas com a pressão interna mantida no mesmo valor da externa (p_0). Encontre o novo raio do balão nessas condições.
- D) Se o centro do balão se encontra à altura h acima do solo no instante em que sua temperatura é aumentada para $T = \beta T_0$, ache a velocidade do balão quando seu centro estiver à altura $H(\ne h)$ acima do solo.

HISTÓRIA

3ª QUESTÃO

De acordo com Gabriel Bittencourt, teve grande importância para a navegação capixaba o contrato com a Companhia Espírito Santo – Campos, que era subvencionada pelo Governo Imperial. Seus navios realizavam duas viagens mensais ao Espírito Santo e à Bahia, aportando em Itapemirim, Piúma, Vitória e São Mateus.

(BITTENCOURT, Gabriel. História geral e econômica do Espírito Santo. Vitória: Multiplicidade, 2006. p.183. Adaptado).

- A) Descreva e comente alguns dos principais produtos comercializados por meio do transporte marítimo capixaba durante o século XIX.
- B) Analise a expansão dos meios de transporte, no Espírito Santo, a partir de meados do século XIX, relacionando-a com a modernização vivenciada desde então.

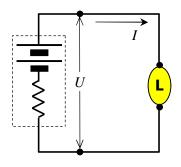
QUÍMICA

3ª QUESTÃO

O equilíbrio químico que envolve o sistema carbonato está presente em algumas situações da natureza, como na formação das estalagmites e das estalactites nas cavernas e na formação de corais em oceanos. As equações químicas abaixo representam alguns dos processos mencionados acima.

$$CO_{2}(g) + H_{2}O(I) \rightleftharpoons H_{2}CO_{3}(aq) \quad \Delta H > 0$$
 Eq.1
 $H_{2}CO_{3}(aq) \rightleftharpoons HCO_{3}^{-}(aq) + H^{+}(aq)$ Eq.2
 $CaCO_{3}(s) + H^{+}(aq) \rightleftharpoons HCO_{3}^{-}(aq) + Ca^{+2}(aq)$ Eq.3

Dados: Kps (CaCO₃) = $3x10^{-9}$, Ka₁ (H₂CO₃) = $4,45x10^{-7}$ Log₁₀(4,45) = 0,65


Baseando-se nas informações acima,

- A) escreva as expressões das constantes de equilíbrio para as reações descritas pelas equações 1 e 3;
- B) explique a influência da pressão de CO₂ na precipitação de CaCO₃;
- C) indique a influência da pressão e da temperatura na solubilidade do CO₂ em água;
- D) calcule o pH de uma solução H₂CO₃ 0,10 mol.L⁻¹. Considere, nesse cálculo, apenas o equilíbrio representado pela Equação 2;
- E) calcule a massa, em mg, de carbonato de cálcio que se dissolve em 1 L de uma solução saturada de CaCO₃.

ESPAÇO RESERVADO PARA O DESENVOLVIMENTO DA 3ª QUESTÃO

4ª OUESTÃO

O circuito indicado ao lado é composto de uma bateria não ideal e de uma carga resistiva (lâmpada \mathbf{L}). O gráfico ao lado representa a curva característica tensão U versus corrente I que a bateria fornece a diferentes cargas. Considere que a bateria esteja operando com uma particular lâmpada, à qual fornece a particular corrente I = 6.0 A . Determine

- A) a força eletromotriz da bateria;
- B) a resistência interna da bateria;
- C) a resistência dessa particular lâmpada;
- D) a potência elétrica dissipada por essa lâmpada e o rendimento (eficiência) da bateria nessa situação de operação.

FÍSICA

HISTÓRIA

4ª QUESTÃO

"[...] A Revolução saiu sob pressão da sociedade civil. Tenho o hábito de repetir, e se não ouvirem de alguém, vão ouvir pela primeira vez: as Forças Armadas até hoje são ressentidas com a sociedade brasileira pela 'safadeza histórica` da memória que se criou, porque não agimos sozinhos e hoje em dia a mídia não se cansa de nos jogar na cara que somos torturadores e golpistas [...]. Acho que há muita injustiça."

(GONÇALVES, Leônidas Pires "Depoimentos". In: D'ARAUJO, M. Celina; SOARES, Gláucio A. Dillon; CASTRO, Celso. *Visões do Golpe: a memória militar sobre 1964.* Rio de Janeiro: Relume-Dumará, 1994. p. 14-15).

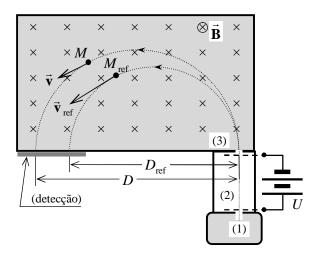
- A) Indique que outros grupos, categorias e/ou classes sociais coalizaram-se aos militares, analisando duas razões que, segundo as leituras deles, justificariam o Golpe de 1964.
- B) Estabeleça as diferenças entre memória e história.

QUÍMICA

4ª OUESTÃO

Observe as cinco reações a seguir e faça o que se pede.

III) (**E**) + HCN \blacksquare


I)
$$(\mathbf{A}) + \mathrm{Br}_2$$
 (\mathbf{B}) II) $+ \mathrm{HNO}_3 + \mathrm{H}_2 \mathrm{SO}_4$ $(\mathbf{C}) \xrightarrow{\mathrm{HNO}_3} (\mathbf{D})$

- A) Escreva o nome sistemático (IUPAC) das substâncias (A) e (E).
- B) Calcule o número de estereoisômeros possíveis para a substância (B).
- C) Escreva a estrutura química das substâncias (C) e (D) e a estrutura química do principal produto formado na reação IV, a substância (F).
- D) Na reação V, identifique o tipo de hibridação e o estado de oxidação presente no carbono carboxílico 1 da substância (G).
- E) Identifique qual a função do composto LiAlH₄ na reação V.

ESPAÇO RESERVADO PARA O DESENVOLVIMENTO DA 4ª QUESTÃO

5a QUESTÃO

Um espectrômetro de massas tem três partes, conforme figura ao lado. No forno (1), os átomos cuja massa se quer determinar são ionizados uma vez, de forma a adquirirem a carga Q=e. Em seguida, os íons adentram a região aceleradora (2), com velocidade desprezível, onde a ação da ddp $U=1,0\times10^4~\rm V$ aumenta sua velocidade até o momento em que eles penetram a região defletora (3). Nessa região, há um campo magnético uniforme $\vec{\bf B}$ de intensidade $B=0,50~\rm T$, o qual entra em uma direção perpendicular ao plano da figura. A massa do íon pode ser obtida a partir da distância $D=0,20~\rm m$, medida desde o ponto de entrada na região (3) até o ponto em que ele atinge uma placa de detecção de íons lá colocada. Nos seus cálculos, despreze a ação gravitacional sobre os íons.

- A) Obtenha o módulo da velocidade dos íons na região (3).
- B) Determine a massa de cada íon.
- C) Ache o intervalo de tempo de "voo" de cada íon na região (3), desde a entrada até a detecção.
- D) Em geral, o espectrômetro é utilizado em uma base de comparação, a partir de uma massa de referência; ou seja, sabendo-se uma, obtêm-se as demais. Isso significa que não é necessário conhecer nem o valor de U nem o de B. Para relacionar uma massa desconhecida M com uma de referência $M_{\rm ref}$, basta apenas medir as respectivas distâncias D e $D_{\rm ref}$. Prove essa afirmativa, obtendo $M/M_{\rm ref}$ em função de $D/D_{\rm ref}$.

HISTÓRIA

5a OUESTÃO

"[...] A Revolução tecnológica que estamos vivenciando tende a ser universalista e transcende a função de conferir e preservar as identidades nacionais. Contribui para situar cada um de nós relativamente aos demais. No entanto, essa situação tropeça rapidamente com as seguintes dificuldades: como continuar sendo o mesmo e praticar a tolerância com as demais civilizações? É necessário, então, para inserir-se no mundo, abandonar o que compõe a razão de ser de um povo?"

(SCHIMIDT, Maria Auxiliadora; CAINELLI, Marlene. Ensinar História: pensamento e ação no magistério. São Paulo: Scipione, 2004. p. 116-117).

- O trecho acima tematiza a globalização e a mundialização do capital.
- A) Explique o que representa a "primavera árabe".
- B) Aponte duas razões que explicam a crise pela qual passa a Comunidade Europeia.

QUÍMICA

5a QUESTÃO

A ligação química é a interação entre átomos e está relacionada ao arranjo dos núcleos e elétrons na estrutura química. A natureza da ligação dependerá de como acontece esse arranjo. Com essas informações,

- A) cite três tipos de ligações que podem estar presentes nas substâncias químicas;
- B) indique o tipo de ligação química que prevalece no cloreto de sódio gasoso;
- C) indique, para o composto molecular formado pela reação entre H₂SO₄ e NaOH, a principal interação intermolecular presente e cite duas propriedades físicas desse composto formado que são consequências dessa interação;
- D) determine a massa do composto iônico formado quando 20,00 mL de H_2SO_4 0,10 mol. L^{-1} reagem com 0,10 g de NaOH.

ESPAÇO RESERVADO PARA O DESENVOLVIMENTO DA 5ª QUESTÃO

OS ESPAÇOS EM BRANCO PODEM SER USADOS PARA RASCUNHOS.